Shell model analysis of intruder states and high-K isomers in the fp shell

G. Stoitcheva^{1,2,a}, W. Nazarewicz^{1,2,3}, and D.J. Dean¹

¹ Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

² Department of Physics, University of Tennessee, Knoxville, TN 37996, USA

³ Institute of Theoretical Physics, Warsaw University, ul. Hoża 69, 00-681 Warsaw, Poland

Received: 12 September 2004 /

Published online: 15 August 2005 – © Società Italiana di Fisica / Springer-Verlag 2005

Abstract. We perform a systematic shell-model study of collective intruder structures and fully aligned high-spin states in nuclei from the lower-fp shell in the sdfp configuration space. We analyze the intruder structures associated with the 1p-1h cross-shell excitations from the sd shell that have been observed in several nuclei from this region, including ⁴⁴Ti and ⁴⁴Sc. We compare the shell-model calculations to the recent mean-field work (H. Zduńczuk, W. Satuła, R.A. Wyss, nucl-th/0408018) and experimental data (M. Lach, J. Styczeń, private communication). The high-spin behavior may be understood in terms of the competing cross-shell proton and neutron excitations. The interplay between proton and neutron intruder states is reflected in the angular-momentum dependence of electromagnetic rates.

PACS. 21.60.Cs Shell model – 21.10.Ky Electromagnetic moments – 21.10.Pc Single-particle levels and strength functions – 27.40.+z $39 \le A \le 58$

1 Introduction

The nuclei of the $f_{7/2}$ shell are of special interest due to the presence of intruder states which can give rise to shape coexistence phenomena. These nuclei lie close to the doubly magic ⁴⁰Ca and ⁵⁶Ni, and therefore their structure can often be interpreted in terms of the competition between collective or single-particle excitations. One objective of this work is to analyze high-spin states of the lower-fpshell nuclei based on large-scale shell-model (SM) calculations using the code ANTOINE [1]. In particular, we are interested in the intruder structures associated with cross-shell excitations across the N = Z = 20 gap.

2 Shell model analysis

In this work, we study high-spin excitations in $A \sim 44$, $20 \leq Z \leq N \leq 24$ nuclei. An excellent agreement is observed between experiment and SM for the energies at the maximally aligned states of $f_{7/2}^n$ (fig. 1, top) and $d_{3/2}^{-1}f_{7/2}^{n+1}$ (fig. 1, bottom) structures. The black bars represent our SM calculations in which 1p-1h cross-shell excitations were allowed. They are compared to experimental data given by grey bars. We used the interaction of

Fig. 1. Comparison between SM and experiment for the maximum spin states in $f_{7/2}^n$ (top) and $d_{3/2}^{-1}f_{7/2}^{n+1}$ (bottom) configurations in several N = Z (left) and N > Z (right) nuclei in the fp shell.

ref. [2] where the mass scaling of the SM matrix elements was done consistently, thus reducing the sd interaction channel by $\sim 4\%$ as compared to the previous work [2].

^a e-mail: stoitchevags@ornl.gov

Fig. 2. Energy differences, $\Delta E - \Delta E_{exp}$, for SM and HF [3] calculations.

Fig. 3. Calculated negative-parity yrast structures in ⁴⁴Sc compared to experimental data [4].

Figure 2 shows the SM and Skyrme Hartree-Fock (HF) [3] energy differences, $\Delta E \equiv E(d_{3/2}^{-1}f_{7/2}^{n+1}) - E(f_{7/2}^{n})$, of the maximally aligned states, relative to experimental values. While for the $N \neq Z$ nuclei, the SM calculations overestimate the data by ~ 10%, HF underestimates them by ~ 10%. However, it is interesting to see that the resulting energy difference patterns in the SM and HF are indeed very similar. In general, excellent agreement between the SM and experiment was obtained.

High-spin states of the odd-odd $^{44}{\rm Sc}$ nucleus have been studied in a recent experiment [4]. In the SM description, the positive-parity yrast structure of $^{44}{\rm Sc}$ has one proton and three neutrons in the $f_{7/2}$ shell, and the maximum aligned state has $I^{\pi}=11^+$. The negative-parity states up to $I^{\pi}=15^-$ can be associated with the holes in the sd shell.

A comparison between the experimental and calculated negative-parity band is given in fig. 3, while fig. 4 (bottom) shows the predicted B(E2) transition rates. The effective proton and neutron charges that are used in the calculations, $e_p = 1.33e$ and $e_n = 0.64e$, have been determined from E2 transitions in lower-fp shell nuclei [5]. The transition rates and the shell occupations in the wave function (fig. 4, top) nicely show the interplay between proton and neutron intruder configurations for a given angular

Fig. 4. Top: proton and neutron SM occupations in the $\pi =$ – intruder structure of ⁴⁴Sc. Bottom: calculated B(E2) rates within the intruder structure.

momentum I^{π} . It is predicted that the lower spin states as well as the highest $I^{\pi} = 15^{-}$ spin state, are dominated by proton excitations. The intermediate angular-momentum spin states between $I^{\pi} = 8^{-}$ up to $I^{\pi} = 13^{-}$ are fairly equal mixtures of proton and neutron excitations.

As our present calculations are limited to 1p-1h crossshell excitations only, some correlations are missing in our SM description. In particular, the structure N = Z nuclei can be affected by an explicit absence of the 2p-2h cross-shell T = 0 excitations. This is shown in fig. 2, which clearly demonstrates a different behavior of ΔE for $N \neq Z$ and N = Z nuclei. Detailed studies of this effect are in progress [6].

Discussions with Wojtek Satuła and Jan Styczeń are gratefully acknowledged. This work was supported in part by the U.S. Department of Energy under Contract Nos. DE-AC05-00OR22725 with UT-Battelle, LLC (Oak Ridge National Laboratory), and DE-FG02-96ER40963 (University of Tennessee).

References

- 1. E. Caurier, F. Nowacki, Acta Phys. Pol. 30, 705 (1999).
- 2. P. Bednarczyk et al., Phys. Lett. B 393, 285 (1997).
- 3. H. Zduńczuk, W. Satuła, R.A. Wyss, nucl-th/0408018.
- 4. M. Lach, J. Styczeń, private communication.
- 5. W.A. Richter et al., Nucl. Phys. A 523, 325 (1991).
- 6. G. Stoitcheva et al., to be published.